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ABSTRACT

Phenols can be employed as proelectrophiles in operationally simple ruthenium-catalyzed dehydrative direct arylations, proceeding through
chemo- and regioselective functionalizations of C-H and C-OH bonds.

Metal-catalyzed cross-coupling reactions have matured to
being indispensable tools for C-C bond formations, which
have proved particularly useful for the synthesis of diversely
substituted biaryls. Traditionally, cross-coupling reactions
rely on the use of preactivated substrates, namely organic
(pseudo)halides and organometallic reagents as electrophiles
and nucleophiles, respectively (Scheme 1, (a)).1 Unfortu-
nately, these activated starting materials lead to undesired
waste from reagents, solvents, and additional purifications.
Therefore, focus has shifted in recent years to the develop-
ment of direct arylations employing unactivated arenes as
pronucleophiles (Scheme 1, (b)).2 While these C-H bond
functionalization protocols have been recognized as ecologi-

cally benign and economically attractive alternatives to
traditional cross-coupling strategies, the direct use of broadly
available, yet inexpensive phenols as proelectrophilic re-
agents has remained largely unexplored. As a result, a first
example of metal-catalyzed cross-couplings via C-OH bond
functionalizations (Scheme 1, (c)) was disclosed only very
recently. Thus, Fang and co-workers showed elegantly that
phosphonium salts enabled an in situ activation of tautomer-
izable heterocycles, as well as their subsequent palladium-
catalyzed cross-coupling using boronic acids as nucleo-
philes.3 However, this methodology required a separate
preformation of the corresponding heterocycle-phosphonium
salt electrophile in the absence of the palladium catalyst.
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Scheme 1. Strategies for Catalytic Biphenyl Syntheses

ORGANIC
LETTERS

2008
Vol. 10, No. 21

5043-5045

10.1021/ol802252m CCC: $40.75  2008 American Chemical Society
Published on Web 10/15/2008



Furthermore, the use of stoichiometric amounts of organo-
metallic reagents in this cross-coupling reaction resulted,
unfortunately, again in the generation of undesired byproduct
(vide supra).3

On the contrary, a significantly more sustainable approach
would be represented by unprecedented direct arylations of
arenes as pronucleophiles with phenols as proelectrophilic
arylating reagents Via functionalizations of C-H and C-OH
bonds (Scheme 1, (d)). Herein, we present a first example
of such a dehydrative coupling between simple arenes and
inexpensive phenols,4 which was accomplished with a highly
chemo- and regioselective ruthenium5 catalyst.

As part of our program directed toward the development
of sustainable metal-catalyzed direct arylations,6 we probed
different transition metals, (pre)ligands, bases, and additives
for the envisioned dehydrative direct arylation with phenols.
Among a variety of reaction conditions, a system comprising
ruthenium precursor [{RuCl2(p-cymene)}2] and HASPO7

preligand 1, along with K2CO3, p-toluenesulfonyl chloride
(p-TsCl), and N,N-dimethylacetamide (DMA), was found to
be superior (Tables S-1, and S-2 in the Supporting Informa-
tion).

Thereby, an efficient and selective in situ activation of
the phenolic starting material was accomplished. The meth-
odology turned out to be operationally simple, since a
successive addition of reagents for a preformation of the
electrophile was not necessary. In addition to its chemical
stability, the in situ generated catalyst displayed a remarkable
chemo- and regioselectivity. Hence, undesired byproducts
originating from nucleophilic reactivities of the phenols8,9

or from desulfinylative coupling reactions10 were not ob-
served.11

With an optimized catalytic system in hand, we tested its
scope in dehydrative direct arylations of oxazoline 2a using
differently substituted phenols (Scheme 2). These studies
highlighted a broad functional group tolerance, which set
the stage for the efficient conversion of electron-deficient
(4a-f), as well as electron-rich (4g-i) phenols, bearing inter

alia an ester, ketones, alkyl, and aryl fluorides, or an ether.
Importantly, the high efficacy of the ruthenium catalyst
allowed further for catalytic reactions to be performed at a
reduced reaction temperature of 100 °C, as illustrated for
the preparation of oxazoline 4b.

Notably, dehydrative direct arylations were not restricted
to oxazolines as pronucleophiles but could be employed for
the direct functionalization of pyrazolyl-substituted arenes
as well (Scheme 3). Hence, functionalized, electron-deficient,
as well as electron-rich phenols 3 provided the desired
biphenyls 6a-i in high yields. Additionally, pyridyl-
substituted pronucleophiles could be directly arylated, giving
selectively the desired biphenyls 7a-c.
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Scheme 2. Dehydrative Direct Arylations of Oxazoline 2a
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When apolar toluene was used as solvent, a catalyst
derived from carboxylic acid MesCO2H12 enabled most
efficient direct arylations of oxazoline 2a(Table S-2 in the
Supporting Information) through a concerted
metalation-deprotonation12,13 mechanism (Scheme 4).

In summary, we report on the development of a first direct
arylation between simple arenes as pronucleophiles and

inexpensive, broadly available phenols as proelectrophiles.
Notably, this operationally simple dehydrative arylation was
achieved with a highly chemo- and regioselective ruthenium
catalyst and proceeded through the functionalizations of both
C-H as well as C-OH bonds.
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Scheme 3. Scope of Dehydrative Direct Arylations

Scheme 4. Dehydrative Direct Arylations in an Apolar Solvent

Org. Lett., Vol. 10, No. 21, 2008 5045




